Allosteric site on muscarinic acetylcholine receptors: a single amino acid in transmembrane region 7 is critical to the subtype selectivities of caracurine V derivatives and alkane-bisammonium ligands.

نویسندگان

  • Stefan Buller
  • Darius Paul Zlotos
  • Klaus Mohr
  • John Ellis
چکیده

Diverse muscarinic allosteric ligands exhibit greatest affinity toward the M2 receptor subtype and lowest affinity toward M5. In this study, we evaluated the potencies with which two groups of highly M2/M5 selective allosteric agents modulate the dissociation of [3H]N-methylscopolamine from M2/M5 chimeric and point-mutated receptors. These allosteric ligands included two alkane-bisammonium compounds and a series of caracurine V derivatives, which are structurally closely related to (but stereochemically different from) the prototype allosteric ligand alcuronium. Like alcuronium, the caracurine V and alkane-bisammonium compounds displayed significantly increased affinities compared with M5 toward the chimera that included the M2 second outer loop (o2) plus surrounding regions. Unlike alcuronium, the compounds had enhanced affinities for a chimera with M2 sequence in transmembrane region (TM) 7; site-directed mutagenesis in wild-type and chimeric receptors indicated that the threonine residue at M2(423) was entirely responsible for the sensitivity toward TM7. Subsequent studies demonstrated that this TM7 epitope is likewise present in the M4 receptor, as M4(436)serine. The M2(423)threonine residue is near the M2(419)asparagine identified previously to influence gallamine binding. These studies demonstrate that a stereochemical difference can be sufficient to translate into divergent epitope sensitivities. Nonetheless, these allosteric ligands seem to derive affinity from two main regions of the receptor: o2 plus flanking regions and o3/TM7. These two epitopes are sufficient to explain the M2/M5 selectivity of the presently investigated compounds; this is the first time that the subtype selectivity of muscarinic allosteric agents has been completely accounted for by distinct receptor epitopes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allosteric site on muscarinic acetylcholine receptors: identification of two amino acids in the muscarinic M2 receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine-occupied receptors.

Two epitopes have been identified recently to be responsible for the high-affinity binding of alkane-bisammonium and caracurine V type allosteric ligands to N-methylscopolamine (NMS)-occupied M2 muscarinic acetylcholine receptors, relative to M5 receptors: the amino acid M2-Thr423 at the top of transmembrane region (TM) 7 and an epitope comprising the second extracellular loop (o2) of the M2 re...

متن کامل

Allosteric interactions with muscarinic acetylcholine receptors: Complex role of the conserved tryptophan M2Trp in a critical cluster of amino acids for baseline affinity, subtype selectivity, and cooperativity

In general, the M2 subtype of muscarinic acetylcholine receptors has the highest sensitivity for allosteric modulators and the M5 subtype the lowest. The M2/M5 selectivity of some structurally diverse allosteric agents is known to be completely explained by M2 Tyr and M2 Thr in receptors whose orthosteric site is occupied by the conventional ligand N-methylscopolamine (NMS). This study explored...

متن کامل

Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of...

متن کامل

Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor.

Benzylquinolone carboxylic acid (BQCA) is an unprecedented example of a selective positive allosteric modulator of acetylcholine at the M1 muscarinic acetylcholine receptor (mAChR). To probe the structural basis underlying its selectivity, we utilized site-directed mutagenesis, analytical modeling, and molecular dynamics to delineate regions of the M1 mAChR that govern modulator binding and tra...

متن کامل

Critical amino acid residues of the common allosteric site on the M2 muscarinic acetylcholine receptor: more similarities than differences between the structurally divergent agents gallamine and bis(ammonio)alkane-type hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)ammonium]dibromide.

The structurally divergent agents gallamine and hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)ammonium]dibromide (W84) are known to interact competitively at a common allosteric site on muscarinic receptors. Previous studies reported that the M2 selectivity of gallamine depended largely on the EDGE (172-175) sequence in the second outer loop (o2) and on 419Asn near the junction of o3 and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 61 1  شماره 

صفحات  -

تاریخ انتشار 2002